UNIT –III
	Software Requirements: Requirements Elicitation, Use Cases, Software Requirements Specification, Change Control, Introduce Software Requirements Carefully, Diagnosing Software Requirements Problems.

Chapter 6: Software Requirements

It seems to know what software is supposed to do before we build it. Nevertheless, many projects are delayed (or fail completely) because development begins before anyone understands how the software should behave. The solution to this problem is to take the time to gather and verify the software requirements documentation that completely describes the behavior that is required for the software before it is designed, built, and tested.
However, most software is built to meet the needs of someone other than the programmer. If those needs are going to be satisfied, the behavior of the software must be planned before the software is built. Software requirements engineering is the art and science of developing an accurate and complete definition of the behavior of software that can serve as the basis for software development. Like project management, programming, and testing, software requirements engineering encompasses a set of skills that require training and practice.

Software requirements engineering tasks are usually performed by skilled requirements analysts (who sometimes have the title “Business Systems Analyst”). If a project manager does not have a requirements analyst on his team, he may be able to rely on existing team members to fill this role. There is a good deal of overlap between the skills required for design, programming, and testing, and those required for software requirements engineering. A team member willing to spend time learning new skills (and a team willing to work with him and help him through this task) will often be able to build software requirements that are sufficient for building and testing. This chapter covers some of the most important practices that a requirements analyst uses.

Requirements Elicitation

Requirements elicitation is the process through which a requirements analyst gathers, under-stands, reviews, and articulates the needs of the software project’s stakeholders and users. Elicitation involves fact-finding, validating one’s understanding of the information gathered, and communicating open issues for resolution. The objective of this activity is to create a complete list of what the users believe are important requirements. Elicitation activities can include:

· Interviews with the users, stakeholders, and anyone else whose perspective needs to be taken into account during the design, development, and testing of the software

· Observation of the users at work

· Distribution of discussion summaries to verify the data gathered in interviews.
The objective of all elicitation activities is to create a complete list of what the users and stakeholders believe are the important needs that must be filled by the software, the behavior that the software must exhibit, and the constraints to which the software must adhere. A variety of elicitation practices can be used to gain a complete understanding of user needs. Each practice should be considered carefully, to determine which is best suited for a particular project; in addition, several techniques can be used in combination. The goal of using any of the techniques is to gain the commitment of the users so a common view of the system is established.

Conduct Interviews

The requirements analyst must figure out how to get that information out of each user, stakeholder, expert, and anyone else who has information that may impact the project. The most straightforward and effective practice for doing this is by conducting interviews. Interviews with users and stakeholders are the requirements analyst’s most important elicitation tool. The goal of the interview is to identify specific needs that the person being interviewed has for the software. This generally requires understanding what the interviewee does on a day-to-day basis that will require her to interact with the software.

The first step in conducting interviews is to identify who the interviewees should be. Start with the list of users and stakeholders listed in the vision and scope document. While they are being interviewed, additional people may be mentioned. The interviewer should determine whether any of those people should be interviewed as well. If the software is being built for a specific industry or area of expertise, the requirements analyst may need to seek out subject matter experts in that area in order to ensure that the software meets the needs of a typical professional familiar with the subject.

When the software is intended to be marketed or sold by the organization, many of the market needs will originate in a sales or marketing department. In this case, it is important that sales and marketing personnel are considered subject matter experts and are inter-viewed for requirements. If the goal of the project is to enhance or maintain software that is already out in the field, then the interviewees should include actual external users.

The most important rule of the interview is to get the interviewee talking. Software generally doesn’t get developed for its own good; a project is usually started because somebody inside an organization needs it. If the requirements analyst is talking to that person, he almost certainly will be happy to talk about it. It is likely that he has been complaining about specific problems and issues for a long time. There are many leading questions that an interviewer can ask to help uncover important information:

· Why is the software being built? What benefits will the interviewee directly see? What benefits will other people in the organization see?

· What problems need to be addressed with new software? Why do those problems exist? How would you solve them?

· Who will use the software once it is built? Why do they need it? How frequently will they be using the software? Who will support the software?

· In what environment will the software be used? Will it be run within the organization or by its customers? Who will control the hardware?

· Are there any known constraints on the performance, design, or quality of the software?

· What inputs will be used by the software? What outputs will it create? (If examples of these exist, they should be saved for later requirements activities.)

· Are your answers “official,” or is there someone else who might be able to answer these questions better? Are there “experts” in the organization who may have additional information?

· How do the users currently do their jobs? How do they expect their jobs to change after the software goes into production? Are there typical problems they currently encounter that they would like to fix?

· Are there any “workarounds” that the users perform, in order to make up for the short-comings of existing software? Can these workarounds be incorporated into planned features or turned into additional ones? (If the workarounds are not part of the original scope of the project, does that scope need to be expanded to include them?)

· “Is there anything that I missed?”

In the early stage of interviews, any kind of open-ended questions are good for getting the interviewee talking. It is important that the requirements analyst does not interrupt the interviewee. If he has something to say, it could be important. One key to interviewing is to make sure that the predispositions of the interviewer do not interfere with the free exchange of information. Questions should center on the interviewee’s problems. The requirements analyst should try to gain an understanding of the real problem without introducing bias into the user’s information.

When there are multiple people with similar job functions or expertise, it is often helpful to interview them in groups. When there are too many individual interviews, they will often turn into an endless chain of conflicting statements, making it difficult to reach consensus. After an initial set of interviews, a requirements analyst should follow up with meetings to verify his or her notes and to gather any new information that the interviewees may have come up with. These meetings may consist of additional interviews, ad-hoc meetings with one or more people, brainstorming sessions, or other kinds of interactions.

Observe Users at Work

Observing a user’s workflow in the context of his or her environment allows a requirements analyst to see problems that the user encounters with the current system and to identify ways to enhance and streamline the behavior of the software. Watching users at work provides a more accurate understanding of their activities than simply asking them to communicate the steps involved in performing their tasks. Often there are many details that someone familiar with a task might not think to mention, but it is very important for the requirements analyst to fully understand the task.

Most software is built to help users with a job that they already do. Many software projects have a goal of automating or augmenting existing manual processes, providing new capabilities to existing people in an organization, or replacing and extending legacy software programs. In all of these cases, there are already people in the organization who are doing work that is relevant to the behavior of the software. Once the requirements analyst has identified people who will use the software and whose day-to-day work is relevant to the behavior of the software, it is useful to observe those people at their jobs. There are a few guidelines that may be useful:

· Many software projects are started because people who are doing work face tedious or difficult tasks that could be automated. Those people are often happy to open up and talk about the problems that need to be solved.

· Some people may feel self-conscious being observed. It is important that they know that the goal of the requirements analyst is to understand their needs in order to build soft-ware to help them. It is also important that they understand that the software is not being built to replace them, but to help make their jobs easier.

· Many organizations have training programs for new employees. If a training program exists for the job being observed, the requirements analyst should attend it. This will often yield more insight into the work, especially if there are training materials that can be used as part of the requirements gathering process.

· If possible, the requirements analyst should try to participate in the work being observed. This is often an effective way to understand the perspective of the users of the software.

Use a Discussion Summary

All of the interaction with the users, stakeholders, and other people who have relevant perspectives will yield a great deal of information. The requirements analyst should capture this information as accurately as possible. Some people find that taking notes on paper (rather than using a computer) allows for better capture of information. However, note-taking software captures the interviews in an audio file and links notes to their correct time offset in that file, can also be a useful tool.

Once all of the information has been gathered from the elicitation activities, the requirements analyst should use a discussion summary to validate the information. The discussion summary allows all of the notes to be summarized into a single document; that document should be distributed to the main users and stakeholders for a deskcheck. This will help to catch any potential defects before they make it into the requirements documentation. Table 6.1 contains a template for the discussion summary.

	1. Project background

a. Purpose of project

b. Scope of project

c. Other background information

2. Perspectives

a. Who will use the system?

b. Who can provide input about the system?

3. Project objectives

a. Known business rules

b. System information and/or diagrams

c. Assumptions and dependencies

d. Design and implementation constraints

4. Risks

5. Known future enhancements

6. References

7. Open, unresolved, or TBD issues

 Table 6.1: Discussion Summary Template
Most, if not all, of the notes gathered by a requirements analyst during the elicitation activities should fit into the discussion summary template. Conversely, the discussion summary template can serve as a guide for a novice requirements analyst in leading interviews and meetings. The requirements analyst should go through all of her notes when writing the discussion summary.
This “Project Background” section contains a summary of all the notes that pertain to the background of the project. It contains these subsections:

· Purpose of the project: Every stakeholder and user has a reason that the software should be developed. This section should contain a summary of each of those reasons. The goal is to give the reader an understanding of why these people need the system to be developed.

· Scope of the project: The vision and scope document described the scope of the software to be developed, by listing each feature that would be included. This section should go into greater detail, elaborating on each feature by listing specific behaviors and tasks the software will perform.

· Other background information: This section should contain any additional information that may help a reader under-stand why the system is needed. (Additionally, most of the notes that don’t fit any-where else in the discussion summary can go into this section.)

The “Perspectives” section is used to identify the people who will help to define the behavior of the software. Each person’s perspective should be taken into account. Some of these perspectives may conflict with each other; that’s okay, as long as they are described accurately. These conflicts will be worked out later, when the behavior is described in the use cases. This section must provide/contain answers to the following key questions:

· Who will use the system: The people who will be using the software should be divided into categories. Each category of users should have a unique name (“Salesperson”) and description (“A member of the North America sales team who will be selling the software in a specific territory.“). The names that are given to the categories of users should make sense to people in the organization—most organizations have their own names for different roles or positions, and the requirements analyst should use that terminology wherever possible. The analyst will have many notes that pertain to each of these categories. They should be divided up by category and summarized in this section.

· Who can provide input about the system: The organization contains many people who can provide some input about the system to be developed. This section should list everyone who was consulted about the system behavior, and summarize any notes that describe the needs of each one.

The “Project objectives” section summarizes the information that was gathered in the elicitation phase, such as the functionality that the software must implement, the work currently being done or planned in the organization that will be affected or augmented by the software, and any constraints that must be taken into account. This section contains:

· Known business rules: This section should contain details of any procedures that are currently being performed or that are needed in the organization and that will affect the software. The section should indicate who is involved or will be affected.
· System information and/or diagrams: This section should contain a summary of any notes that describe functionality that must be implemented, existing or planned organizational workflow, specific user inter-actions, information about the environment in which the software will be used, calculations that must be performed, and any other functionality that must be implemented. This will probably be the longest section in the discussion summary.
· Assumptions and dependencies: During elicitation meetings, many assumptions and dependencies will be brought up. They should be summarized in this section. Many of these assumptions may already be in the vision and scope document, or in the results of a Wideband Delphi estimation session; it is often sufficient to reference that document, rather than reproduce them in the discussion summary.
· Design and implementation constraints: Many times there are constraints that must be placed on the software: known input or output data formats; tools, code libraries, visual controls, programming languages, or APIs that must be used; visual or GUI design standards that must be adhered to; and performance or quality requirements and other known nonfunctional requirements. These should be listed in this section in detail.

The “Risks” section summarizes any risks identified during the elicitation process that are not already included in the vision and scope document or the project plan.

The “Known future enhancements” section lists expected future enhancements. Often, during elicitation, there are feature requests from users or stakeholders that will not be included in the software. Those requests should be described, in order to make sure every-one knows that they are not going to be implemented.

The “References” section should include any internal or external documents needed to understand the software project—for example, any existing system documentation, screen shots, or original system requirements.

The “Open, unresolved, or TBD (to be determined) issues” section is the last part of the discussion summary. There are usually issues that remain unaddressed at the time the discussion summary is distributed for review. Open issues may be under active discussion with users or stakeholders. Some problems may await resolution. And the requirements analyst may not yet have raised some issues. All of these issues should be summarized here.

Once the discussion summary is complete, it should be distributed for a deskcheck. Minimally, it should be reviewed by the lead users and stakeholders (who are usually listed in the vision and scope document). But ideally, everyone who contributed to the discussion summary should have a chance to review it and give feedback. When the reviewers return their comments, the discussion summary does not need to be updated. However, those comments should be archived along with the discussion summary, and should be taken into account in later requirements activities.

Use Cases

Once the initial round of requirements elicitation is done and a discussion summary has been distributed and reviewed, the requirements analyst is ready to begin creating use cases. A use case is a description of a specific interaction that a user may have with the software. Use cases are deceptively simple tools for describing the behavior of the software. A use case contains a textual description of all of the ways that the intended users could work with the software through its interface.

[image: image1.emf]
 Table 6.1: Use case template
Use cases do not describe any internal workings of the software, nor do they explain how that software will be implemented. They simply show the steps that the user follows to use the software to do his work. All of the ways that the users interact with the software can be described in this manner. A typical use case includes these sections, usually laid out in a table. Table 6.2 shows a template for describing a use case.
Name, Summary, Rationale, and Users

Each use case must begin with information that allows the reader to uniquely identify it. Every use case has a descriptive name and a unique identifying number. The number is used as a way to refer to a specific use case in the SRS (see below). In addition to identifying information, each use case has a summary, or a brief description of what the use case does. The “Rationale” section of the use case contains one or more paragraphs that describe why the use case is needed. This serves as an important quality check to ensure the correctness of the use case.

Each use case represents a series of interactions between the software and one or more users. The users are divided into categories based on the way they interact with the software; the “Users” section lists the kinds of users that interact with this use case. If all categories of users interact with this particular use case, it should list “any user” in this section.

Preconditions and Postconditions

Any software that is being executed can be thought of as being in a state of operation. When the software is in a certain state, it means that a specific set of operations are available to the user that are not available when the software is in other states. For example, a word processor could have an existing document loaded, a new document displayed, or it could be displaying no document at all. It could be showing a configuration window or a dialog box. These are all different, distinct states that the word processing software can be in. There are certain actions that are only available to the user when the software is in a particular state. For example, the user can enter text into the document if the word processor has an existing document loaded, but not if it is displaying a dialog box.

The precondition is the state of the software at the beginning of the use case. This represents the entry criteria for the use case: if the software is not in that state, the use case does not apply. The postcondition is the state that the software is left in after the use case is completed. In the use case, each of these states can be described in words (“the word processor is loaded but no document is being edited”), although it is also possible to create a name for each state and refer to it by name.
Basic Course of Events
The basic course of events is the core of the use case. Table 6.3 shows a very simple basic course of events for a word processor’s search-and-replace feature.

[image: image2.emf]
 Table 6.3: Basic course of events
The basic course of events consists of a series of steps. The first step will generally be the action that the user takes in order to initiate the use case. The remaining steps are a series of interactions between the user and the software. Each interaction consists of one or more actions that the user takes, followed by a response by the software. In this case, the software is responding to the user entering the search term and replacement text and indicating that the replacement should occur.

Alternative Paths

Often, a use case has one basic course of events, as well as several alternative courses that are very similar and that share many of the same steps.

[image: image3.emf]

 Table 6.5: Alternative path for search and replace
In these cases, they are documented as different alternative paths (rather than in separate use cases), to show that they are closely related. An alternative path provides behavior that is similar to the basic course of events but that differs in one or more key behaviors. For example, an alternative path for the search-and-replace use case would be to only replace the first occurrence of the search string. Table 6.5 shows the alternative path for this behavior, as well as an alternative path for searching without replacement and another one for aborting the operation.
As the requirements analyst defines additional alternative paths, it may become clear that one of them is more likely to be used than the basic course of events. In this case, it may be useful to swap them which make the alternative path into the basic course of events, and add a new alternative path to describe the behavior previously called the basic course of events. Table 6.6 shows a final use case for a search-and-replace function, which is numbered UC-8 in this example.

[image: image4.emf]
 Table 6.6: Use case for simple search and replace
Develop Use Cases Iteratively

As the use cases are developed, additional information about how the software should behave will become clear. Exploring and writing down the behavior of the software will lead a requirements analyst to understand various aspects of the users’ needs in a new light, and additional use cases and functional requirements will start to become clear as well. As this happens, they should be written down with a name, number, and summary, then the analyst can apply the four-step process to complete them. Many requirements analysts have found that a four-step approach is effective in developing use cases. Table 6.7 contains a script that describes this approach.

[image: image5.emf]
 Table 6.7: Use case development script

A requirements analyst defining a set of use cases for this software would start by creating one use case for each feature. Initially, each of these would have a name and a number. The numbering system does not matter, as long as it is unique. (A number such as “UC-1” is sufficient.) The requirements analyst should create a new use case document with a blank template for each of these use cases, filling in the name and number for each of them and proceeding through each of the four steps to create a complete set of use cases.

Software Requirements Specification

A software requirements specification (SRS) is a complete description of the behavior of the software to be developed. It includes a set of use cases that describe all of the interactions that the users will have with the software. In addition to use cases, the SRS contains functional requirements, which define the internal workings of the software: that is, the calculations, technical details, data manipulation and processing, and other specific functionality that shows how the use cases are to be satisfied. It also contains nonfunctional requirements, which impose constraints on the design or implementation (such as performance requirements, quality standards, or design constraints). The SRS is the most important work product that is produced by the requirements engineering project activities. All later work products—software design and architecture, code, test plans—are based on the SRS.

SRS Template

The SRS contains the use cases, functional requirements, and nonfunctional requirements. It should also contain overall information about the project, in order to orient the team. Table 6.8 shows the SRS template.

	1. Introduction

a. Purpose

b. Scope

c. System overview

d. References

2. Definitions

3. Use cases

4. Functional requirements

5. Nonfunctional requirements

 Table 6.8: SRS Template

The introduction serves to orient the reader. It describes both the system and the SRS itself:

· Purpose: This section describes the purpose of the document. Typically, this will contain a brief two or three-sentence description, including the name of the project. For example: “The purpose of this document is to serve as a guide to designers, developers, and testers who are responsible for the engineering of the (name of project) project. It should give the engineers all of the information necessary to design, develop, and test the software.” This is to ensure that the person reading the document understands what he or she is looking at.
· Scope: This section contains a brief description of the scope of the document. If the SRS is a complete description of the software, then it will state something similar to: “This document contains a complete description of the functionality of the (name of project) project. It consists of use cases, functional requirements, and nonfunctional requirements, which, taken together, form a complete description of the software.” For complex software, the requirements for the project might be divided into several SRS documents. In this case, the scope should indicate which portion of the project is covered in this document.

· System overview: This section contains a description of the system. This is essentially a brief summary of the vision and scope of the project.

· References: Any references to other documents (including the vision and scope document) should be included here. These may include other documents in the organization, work products, articles, and anything else that is relevant to understanding the SRS. If there is an organizational intranet, this section often includes URLs of referenced documents.

· Definitions: The “Definitions” section contains any definitions needed to understand the SRS. Often, it will contain a glossary, defining terms that the reader may not be familiar with (or that may have a specific meaning here that differs from everyday use). This section may also contain definitions of any data files that are used as input, a list of any databases that may be needed, and any other organizational or workflow-related information that is needed to understand the SRS.

The “Use Cases” section contains each use case is represented by a table, which is in the format shown in Table 6.6. The “Functional requirements” section contains the functional requirements, and the “Nonfunctional requirements” section contains the nonfunctional requirements. Each functional and nonfunctional requirement is added to the SRS as a table (using the format shown in Table 6.9).

[image: image6.emf]
 Table 6.9: Functional and nonfunctional requirements template

The SRS should also contain a complete table of contents that includes the name and number of each use case, functional requirement, and nonfunctional requirement.

Functional requirements

Once an initial set of use cases has been created and filled in, the requirements analyst begins documenting the functional requirements. Table 6.9 shows the template for a functional requirement.

[image: image7.emf]
 Table 6.10: Functional Requirements example

The name, summary, and rationale of each functional requirement are used in the same way as those of the use cases. The behavior that is to be implemented should be described in plain English in the “Requirements” section. Most requirements are only relevant to a small number of use cases these should be listed by name and number in the “References” section. The core of the requirement is the description of the required behavior. It is very important to make this clear and readable.
This behavior may come from organizational or business rules, or it may be discovered through elicitation sessions with users, stakeholders, and other experts within the organization. Many requirements will be uncovered during the use case development. Table 6.10 shows an example of a requirement that might be discovered during the development of the search-and-replace use case in Table 6.6. The behavior in the requirement can contain lists, bullets, equations, pictures, references to external documents, and any other material that will help the reader to understand what needs to be implemented. The goal of the requirement is to communicate this behavior in as clear and unambiguous a manner as possible. The requirements analyst has a great deal of discretion about how to break requirements up. For example, the example above could potentially be broken into two separate requirements, with one requirement allowing for a case-sensitive search and another specifying that the replacement text needs to retain the case of the original text when the search is not case-sensitive.

As with the use case, the requirements should not contain any design elements. The requirements analyst should avoid words like window, button, click, checkbox, radio button, form, etc. Leaving the design unconstrained allows the designers and programmers more freedom to implement the requirements creatively. The more that the design is constrained in the SRS, the harder it makes their jobs.

Nonfunctional requirements

Users have implicit expectations about how well the software will work. These characteristics include how easy the software is to use, how quickly it executes, how reliable it is, and how well it behaves when unexpected conditions arise. The nonfunctional requirements define these aspects about the system. (The nonfunctional requirements are sometimes referred to as “non-behavioral requirements” or “software quality attributes.”)

The nonfunctional requirements should be defined as precisely as possible. Often, this is done by quantifying them. The maximum number of seconds it must take to perform a task, the maximum size of a database on disk, the number of hours per day a system must be available, and the number of concurrent users supported are examples of requirements that the software must implement but do not change its behavior. There are many kinds of nonfunctional requirements, including:

· Availability: A system’s availability, or “uptime,” is the amount of time that it is operational and available for use. This is specified because some systems are designed with expected downtime for activities like database upgrades and backups.

· Efficiency: Specifies how well the software utilizes scarce resources: CPU cycles, disk space, memory, bandwidth, etc.

· Flexibility: If the organization intends to increase or extend the functionality of the software after it is deployed, that should be planned from the beginning; it influences choices made during the design, development, testing, and deployment of the system.

· Portability: Portability specifies the ease with which the software can be installed on all necessary platforms, and the platforms on which it is expected to run.

· Integrity: Integrity requirements define the security attributes of the system, restricting access to features or data to certain users and protecting the privacy of data entered into the software.

· Performance: The performance constraints specify the timing characteristics of the software. Certain tasks or features are more time-sensitive than others; the nonfunctional requirements should identify those software functions that have constraints on their performance.

· Reliability: Reliability specifies the capability of the software to maintain its performance over time. Unreliable software fails frequently, and certain tasks are more sensitive to failure (for example, because they cannot be restarted, or because they must be run at a certain time).

· Reusability: Many systems are developed with the ability to leverage common components across multiple products. Reusability indicates the extent to which software components should be designed in such a way that they can be used in applications other than the ones for which they were initially developed.

· Robustness: A robust system is able to handle error conditions gracefully, without failure. This includes a tolerance of invalid data, software defects, and unexpected operating conditions.

· Scalability: Software that is scalable has the ability to handle a wide variety of system configuration sizes. The nonfunctional requirements should specify the ways in which the system may be expected to scale up (by increasing hardware capacity, adding machines, etc.).
[image: image8.emf]
 Table 6.11: Nonfunctional requirements example
· Usability: Ease-of-use requirements address the factors that constitute the capacity of the software to be understood, learned, and used by its intended users.

The nonfunctional requirements can use the same template as the functional requirements. Table 6.11 shows an example of a nonfunctional requirement.
Develop the SRS Iteratively

Like use cases, the SRS should be developed in a highly iterative manner. Table 6.12 shows the SRS development script, an iterative process that guides a requirements analyst through the development of a software requirements specification.
The goal of the SRS development script is to remove as many defects as possible from the SRS. Many people have trouble figuring out what constitutes a defect. In this case, a defect is any planned software behavior a project team member, user, stakeholder, or decision-maker does not agree with. This means that defects could be caused by any number of problems:

· Somebody does not believe that the planned behavior will satisfy the users’ or stake-holders’ needs.

· Somebody believes that those needs may be better satisfied with different behavior.

· An inspector does not understand what’s written or feels that it is ambiguous or confusing.

· A project team member does not believe that the behavior can be implemented as written.

· Two or more requirements contradict each other where an implementation that satisfies one cannot satisfy the others.

If there is a requirement in the SRS that has one of these problems, it must be identified and fixed so that everyone agrees on everything in the document. There will almost certainly be defects that slip through and each of these will cost much more time to fix after it has been designed, coded, and tested than it would have if it had been caught using the SRS development script. The goal is to find as many defects as possible, in order to reduce the amount of time that the team must spend later on in the project undoing the few that slipped past.

[image: image9.emf]
 Table 6.12: SRS Development script

One of the most common mistakes in software engineering is to shortchange the SRS. A good project manager knows that the fastest way to finish a project is to take the time up front to get the requirements right. For many managers, however, cutting the requirements short sometimes seems tempting. They are impatient to have the programmers begin working on something concrete that they can use, and do not necessarily see the value of planning the behavior of the software before it is built. But skipping the software requirements activities will always come back to damage the project later. Any defects in the SRS will get magnified in later work products. If a defect is left in the SRS and not caught until testing, that defect will be designed into the software. This is why it is worth spending time doing extra iterations of reviews at the outset of the project which is efficient to build the software right the first time than it is to go back and fix it later. The best way to prevent defects is through iteration. This is why the SRS development script calls for repeated reviews of the SRS.
There is a risk that when nontechnical people read the SRS draft, they will fail to understand what is written in it and simply agree to whatever is written down. This often happens in an organization in which software requirements have never been used before. To address this problem, the project manager should work to help everyone understand why it is so important that they take the time to read and understand each SRS draft. Words on a page are much easier to change than functions and objects in source code. A defect that only takes a few minutes to fix in a draft of an SRS can require days, weeks, or months of the most irritating sort of programming to repair after it’s been coded. This is why it’s in the project team’s best interest to catch the defects as early as possible.

[image: image10.emf]
Table 6.13: Examples to illustrate the difference between needs, behavior, and design
Requirements Differ from Design

Many people have trouble understanding the difference between scope (which demonstrates the needs of the organization), the requirements (which describe the behavior of the software to be implemented), and design (which shows how the behavior will be implemented). It is hard for them to describe the behavior of a piece of software without talking about windows, forms, buttons, checkboxes, clicking, dragging, etc. The difference between scope, requirements, and design is a very important distinction that the entire project team should be familiar with.

Table 6.13 shows several examples that illustrate the difference between the user needs that might appear in a vision and scope document, the behavior that might appear in an SRS, and the design that might appear in a design specification or code comments. As a general rule, unless the requirements analyst specifically intends to constrain the designers and programmers, design elements should be left out of the SRS.

SRS Inspection Checklist

The SRS development script specifies that its last iteration must include an inspection of the SRS. The following checklist can serve as a guide to SRS inspectors. It is divided into sections that provide criteria for evaluating the SRS document in general, the use cases, and the requirements. The following checklist items apply to the entire SRS.

· Document completeness
· Does the document meet all established templates and standards?

· Is the document complete?

· Is there any information that should be included, but is not?

· Is there any information that should be removed?

· Are all of the references valid?
· Document feasibility

· Can the project as specified be accomplished within known cost and schedule constraints?
· Document modifiability
· Is the document structured so that any changes can be made easily, completely, and consistently?

· Document feasibility

· Can every element of the SRS be implemented with the available resources and tools?

· The following checklist items apply to the use cases.

· Use case clarity

· Does each use case have a clear flow of events?

· Is every action that the system takes performed in response to an action by the user or to a specific event?

· Has unnecessary duplication been removed using generalization and/or references?

· Is each use case uniquely identified with a name and a number?

· Use case completeness

· Are all of the steps in each use case necessary?

· Are there any steps that are missing?

· Are all alternative paths and exceptions accounted for?

· Use case level of detail

· Does any use case contain details (such as specific calculations, constraints, or other internals that would not directly be observed by the user) that should really be part of the functional requirements instead?

· Does any use case unintentionally constrain the design?

· Use case testability

· Is each use case testable?

· The following checklist items apply to the functional and nonfunctional requirements.

· Requirement clarity

· Is each requirement clear, unambiguous, and readable?

· Is each requirement uniquely identified with a name and a number?

· Requirement completeness

· Is each requirement complete?

· Are there requirements that are missing?

· Requirement level of detail

· Do any requirements unintentionally constrain the design?

· Requirement consistency

· Are the requirements consistent?

· Does any requirement contradict another requirement?

· Are all data structures, calculations, and functions named and used consistently?

· Requirement functionality

· Is every requirement correct?

· Are all inputs and outputs clearly specified?

· Requirement performance

· Are all nonfunctional requirements that constrain performance (speed, resource utilization, etc.) clearly and quantitatively defined?

· Requirement testability

· Is each requirement testable?

Change Control

Throughout the course of most projects, many of the people involved come up with changes to the planned software that could be implemented. Many poorly managed software projects have been driven to failure because the designers, developers, and testers had to repeatedly switch directions because of uncontrolled changes. Changes originate from all over the project where a stakeholder may discover a new need that should be addressed, a senior manager could change his mind about a feature, a programmer could figure out a way to combine behaviors to make the software more efficient, a tester could discover conflicting requirements. Some of these changes will be worth doing, while others should probably be scrapped. But every change will come with a sense of urgency, and the project manager needs a way to sort through them to make sure that only the right changes are made.

Change control is a method for implementing only those changes that are worth pursuing and for preventing unnecessary or overly costly changes from derailing the project. Change control is essentially an agreement between the project team and the managers that are responsible for decision-making on the project to evaluate the impact of a change before implementing it. Many changes that initially sound like good ideas will get thrown out once the true cost of the change is known. The potential benefit of the change is written down, and the project manager works with the team to estimate the potential impact that the change will have on the project. This gives the organization all of the information necessary to do a real cost-benefit analysis.

Changes that seem “small” because they are easy to describe in words can have an unexpectedly large impact on the project. Even the most carefully planned and tracked project can be thrown off course by unexpected changes. A project manager can use change control to keep this from happening.

Establish a Change Control Board

The most important part of change control is a change control board (CCB). There are certain people in the organization who have the power to change the scope of the project. Usually there is a senior manager or decision-maker who has the authority to make sweeping changes at will; sometimes there are several people in this position. For change control to be effective, these people must be part of the CCB. In addition, the CCB should contain people from the project team:

· The project manager

· An important stakeholder or user (or someone who understands and advocates the team’s perspective)

· Someone who understands the effort involved in making the change (usually, this is a representative from the programming team)

· Someone who understands the engineering decisions that the team makes over the course of the project (a design team member, requirements analyst, or, if neither is available, a programmer who participated in the design of the software)

· Someone who is familiar with the expected functionality of the software and with the behavior being discussed for each individual change (typically a tester)

The last person fulfills a very important role in the change control process. Typically, she is involved in the tracking of changes and defects in the product. When a bug is reported, part of her job is to figure out whether it is a defect (meaning that the software does not behave the way its specification requires it to behave) or a change (meaning that the software behaves as designed, but that this behavior is not what the users or stakeholders need).

Changes will generally be reported through the defect tracking system. The job of the tester on the CCB is to understand the change and the behavior specified in the requirements, why this behavior is incorrect, and how and why the software should be changed. Before the project begins, the list of CCB members should be written down and agreed upon, and each CCB member should understand why the change control process is needed and what the role to be in it. The project manager must ensure that everyone buys into the idea of change control and agrees that it is their job to evaluate each change before the software project plan can be altered. The project manager must also reassure them that the programmers and other team members cannot deviate from the plan. This agreement between CCB members is the most important part of the change control process.

Change Control Process

Table 6-14 shows the script for a change control process.

Evaluate Changes in the CCB Meeting

There are points in the course of the project when the CCB may need to meet regularly:
[image: image11.emf]
 Table 6.14: Change control process script

· During the requirements phase, the CCB will need to discuss the scope of the project if it turns out that there are major areas that the vision and scope failed to cover.
· During the design and programming of the software, the team may discover that the requirements need to be changed. For example, programmers may discover requirements in the SRS that seemed reasonable at the time but that turn out to be contradictory or convoluted, which could be changed to simplify the implementation.

· During the testing phase, the testers may discover omissions in the SRS or design that cause defects. For example, an enhancement to a software project may require that a new record type is to be added to one feature, but the requirements and design fail to specify how that record type is handled in another related feature.

· The users or stakeholders may discover during a design walkthrough, demo, user acceptance testing, or beta testing that the software does not fulfill their needs.

During the CCB meeting, the project manager explains the change to the rest of the CCB. Once the CCB is brought up to speed, it must determine what project work products will have to be changed. Each change will affect at least one work product that has already been approved and if this were not the case, the CCB would not have to meet because the change could be handled as part of the regular review process. The CCB must evaluate every change that is requested. This ensures that nothing slips through the cracks, and that a real decision is made for each request. However, this could mean that at some very busy points in the project, the CCB must meet periodically may be sometimes weekly or even daily. At each meeting, it may discuss many changes that have been submitted since the previous meeting.

It is important that when the CCB is being organized, the project manager makes sure that each member understands that this sort of time commitment may be necessary. These meetings are an important way for all of the CCB members to stay on top of the issues that come up during development. This knowledge is very valuable later on in the project when it is time to determine whether the software is ready for release (see Chapter 8).

Analyze the Impact of Each Change

It is vital that the project manager understand and manage all of the information produced in the change control process. While all of the project team members’ opinions are necessary in evaluating the change, it is the project manager who owns the change, and who makes sure that it is properly understood and evaluated. This is generally a lot of work: the project manager needs to take the time to understand why each change is needed, what needs to be changed, and how much work it will be to make the change. His understanding must be complete enough that he can present this information at the CCB meeting.

The project manager who is responsible for guiding each change through the change control process. In addition, he updates the issue report to reflect both the effort that was estimated in the evaluation and the final decision of the CCB. He gives enough information to each CCB member to understand the change. During the change control process, the project manager works with the team to evaluate the impact. One effective way to do this is to use the Wideband Delphi estimation process. If this is done, the project manager can append the results of the Delphi meeting to the issue report and present them to the CCB for cost-benefit analysis.

There is some overlap here between the responsibility of the project manager and that of the QA team. Some QA engineers may question the need for the project manager to be involved in updating specific issue reports in the defect tracking system which is a task that is exclusively controlled by QA. The project manager is responsible for this is because he serves as a conduit for all of the information relevant to the change. As long as a member of the QA team on the CCB initiates each change, they will still be kept in the loop.

Introduce Software Requirements Carefully

There are plenty of books that tell us that poor requirements are the most common cause of software quality problems. Yet many project managers have had difficulty bootstrapping efforts within their own teams to implement better software requirements practices. Software requirements should make intuitive sense as before a team can build software, they need to know what to build. In practice, however, many project managers have found that it is difficult to convince their teams to adopt good software requirements engineering practices. This is especially true for certain kinds of projects:

· Small projects in which the programmer is confident that he understands all of the requirements already.
· Projects in which “everybody” knows what the software is supposed to do.
· Projects without a user interface (like batch processes or backend calculation software).
· Any project considered “technical” one in which one or more of the stakeholders is a programmers.
In all these projects, there is an expectation that a programmer can make all of the decisions about the behavior of the software. It seems intuitive (but incorrect) that since the programmer can already decide on the details of the implementation, he should also have a grasp on what is being implemented. The programmer is often the most confident person in the organization about his own ability to do this, which the rest of the team and the stakeholders always find reassuring. This is a difficult situation for any project manager. It’s never a good idea to try to force the team to accept requirements (or any tool, technique, or practice). But when software requirements are the solution to the team’s most pressing problems, it’s up to the project manager to convince the team to adopt good requirements practices.

Sell the Designers and Programmers First

Software architects, designers, and programmers who are used to working with software requirements tend to find them so important that it’s difficult to imagine working without them. A few negative comments from key programmers can be enough to pull the plug on an entire requirements effort. Even worse, when an organization has not really embraced the idea of software requirements, there is a real danger that the programmers will simply say “yes” to any SRS that comes across their desks, only to ignore or change any requirements that they dislike when they actually build the software.

The key to using software requirements effectively is to help everyone in the organization understand how those requirements will help them to build better software. A project manager who is looking to implement requirements should work to bring the designers and developers on board. If a designer feels threatened by the changes, the project manager should show him how the requirements define only the behavior of the software, and not the design. A programmer may object that her creativity is being stifled; maybe she can be shown that the requirements will help to prevent the kinds of last-minute changes that cost her weeks of work and made a mess of her code on her last project.

It’s not hard to communicate the benefits of change control to the engineering team, because the change control process addresses some of the team’s most common complaints. Most software engineers who are working in an organization that does not have good requirements practices are always shooting at moving targets. Changing requirements are a daily fact of life, and even small projects feel like they rapidly spiral out of control because of uncontrolled changes. A project manager can offer to control these changes, so that the team can concentrate on building a good product once rather than rebuilding a poor one over and over again. Once the programmers have been convinced of that, it’s not hard to show them how software requirements are clearly a means toward that end.

However, it is important that the project manager does not gloss over the fact that when a designer or programmer is working to a set of requirements. This should be out in the open: otherwise, he will feel that the project manager is trying to hide the obvious, which can lead to distrust and reduced morale among the team members. In the end, requirements are good for the designers and programmers, and it should not be too difficult for a project manager to help them to understand. Once the engineering team starts to see requirements engineering as a way for them to increase their quality, reduce their rework, and make their projects go much more smoothly, it is much easier to get the management of the organization on board.

Speak the Managers’ Language

Building software without requirements is similar to building a house without blueprints. It’s possible to start hammering nails into wood, and the builders will probably come up with some sort of structure that will stand on its own and provide shelter. But if those builders start hammering nails before the blueprints are done, it’s almost impossible that they will end up building a house that matches the blueprints. But this doesn’t stop managers from trying to get the programming team to start building the software before the requirements are complete.

Most of the managers do not understand why requirements engineering is important. All they see is people sitting around and writing a bunch of documents instead of writing code. It seems to them that the programmers can at least get started on writing something. For a lot of managers, it’s very frustrating when programmers are not writing code and every day they see the team writing requirements is one more day that the programmers didn’t get started building the software.

Many managers don’t speak the language of software engineering. When this is the case, any attempt to sell them on software requirements by giving a technical explanation about software behavior and quality attributes will cause their eyes to glaze over. Some managers are good at convincing engineers that they understand technical issues that are really beyond them; a project manager might walk away from this conversation thinking that no other person had agreed that the team should implement requirements engineering on a project. The way to sell the managers on requirements engineering is to speak their language. Most senior managers who are in charge of making project decisions are most concerned with getting the product out the door faster, and with getting fewer calls from users who have found that the software does not do what they need it to do. The goal is not to drive a wedge between the programmers and the stakeholders and users. Rather, requirements help everyone reach the same goal.

A common complaint among stakeholders and users is that programmers have not taken the time to listen to them before starting to build the software. If this goes unchecked in an organization for too long, people can start to see the programmers as cocky. There are probably instances in the past when a programmer has assured a stakeholder or user that he understands exactly what she needs, only to go ahead and build something that only does half of what the stakeholder wanted, plus a bunch of stuff that doesn’t make any sense at all. These are all advertisements for adding software requirements engineering activities to the next project, and the project manager can use them as examples of the kinds of problems that software requirements can fix.

Selling the idea of requirements to senior managers and decision-makers usually takes a lot of effort. The project manager will have to repeat herself many times. In many organizations, the managers do not really understand how the software gets built. Luckily, software requirements engineering activities lend themselves to explanations in simple language. It should make intuitive sense to a senior manager that the programmers are not mind-readers. It’s likely that they have neither the time nor the inclination to sit down and interview everyone who may have something to add to the project. And the experts do not have time to make themselves available to the programmers for the entire length of the project. The solution is clearly to have someone sit down and talk to the people who need the software to build.
Diagnosing Software Requirements Problems

Project teams that have problems specifying the software requirements often find that their projects suffer from a few typical problems. Strangely, many programmers and project managers do not realize that they are problems at all. There is a common belief that they are just mistakes of how software is typically developed. But when software teams adopt good requirements engineering practices, they find that these problems are greatly reduced, and that their projects go much more smoothly.

Iteration Abuse

Iteration, or the repetition of a particular task or activity with the goal of improving its main work product, is a practice employed by many programmers. There are several popular development methodologies that rely on iterative development. These methodologies use iteration effectively, by planning and executing a series of small steps that build on previous iterations to produce a series of intermediate builds in which each successive build adds new functionality to a previous build. Each build is intended to be production quality, and is fully tested. Changes are controlled by having each new iteration concentrate on adding new functionality, rather than making many changes to existing behavior.

However, many software teams abuse iteration. They do not use successive iterations to add new functionality to a build that is already production quality. Instead, the iterations are meant to be a sort of guessing game. The first iteration is presented to users and stakeholders, who are expected to tell the programmers what’s wrong with it. The programmers then go back, fix those things, and deliver a second build, which the users and stakeholders again correct. This is expected to continue until the software does everything that the users and stakeholders need it to do.

Unfortunately, this is all too good to be true. The first iteration is easy to delivery but expectations are low, and people are excited to get their hands on a build so quickly and to give their input. The next iterations seem to be doing their job, and the software does look like it’s starting to get better. But as the software gets more complex, each iteration takes longer and longer to do. There seem to be more bugs in each new build. The programmers find that they have to take more time to rip out things that they put in earlier. The iterations finally end, but not with fully working software. Rather, the users and stakeholders get increasingly fed up with long delays and with buggy software that doesn’t do what they need. Any changes made to one function can ripple through the rest of the software, causing many unforeseen problems. Even a minor change in the basic behavior of the software usually requires that the programmers make extensive alterations to its design. This is a messy and difficult way to code, and tends to introduce many defects and delays after a few iterations. By adopting a highly iterative software requirements engineering process, the project team can identify most of the changes before a single line of code is written. They may still have to make changes to the software, but those changes will be much smaller and therefore much less risky.

Scope Creep

Many software projects have been driven to failure by poorly controlled changes. Typically, one of the project team members, users, stakeholders, or decision-makers sees a change that he thinks ought to be implemented. The change seems “small,” so programmers begin altering the software to include it. But the change turns out to be difficult to implement, and the entire project is thrown off track. This problem is usually referred to as scope creep, because the scope of the project slowly drifts over the course of many incremental changes.

Scope creep is so common that many project managers don’t realize that it’s a problem at all. They feel that refusing any change request would be considered “inflexible” by others in the organization, and that any project manager or team member who refuses to make a change is not being a team player. In a project like that, the programmers usually understand the problem. They can point to portions of the code that had to be rewritten several times in order to accommodate changes. The team members know that had they been asked to do the correct project the first time, they could have built it much more quickly and easily, but that it took many changes to finally arrive at the product they have now. And nobody even wants to think about maintenance, since the code is a mess, so it had to be patched and hacked so many times.

However, there will still be requests for changes, and those changes should be controlled using a change control process. It’s often easy to describe a difficult change using simple language. It’s human nature to be accommodating, so the programmers are willing to incorporate that change because it seems like it would be easy to implement. The change control process requires that a description of the change be written down, and that engineering team members take the time to estimate how much effort required adopting the change. This forces the project’s decision-makers to decide that if the change is worth the effort. If it is, the schedule is updated. If the changes are starting to make it harder to develop the software, this will cause each additional change to have a greater impact, which in turn will make it less likely to be approved. Even if the changes are all approved, the team does not have to fight against an unrealistic deadline to get them done, then the project plan is updated, and it remains realistic.
Question Bank

1. What is requirements elicitation? List out and explain supporting activities.

2. Write a note on the following i) Need to conduct interviews ii) Discussion Summary

3. Define use case? Explain its template with example.

4. Why you need to develop use cases iteratively. Explain any example script for use case development of your choice?

5. Define SRS. Explain its template with example.
6. Give a brief overview on functional and nonfunctional requirements with supporting templates.
7. Explain how to define functional and nonfunctional requirements for case sensitivity in search and replacement example.
8. Why you need to develop SRS iteratively. Explain with supporting example script?

9. Explain how requirements are differ from design with example.

10. What is a change control? Why you need it? Discuss the role of CCB and its responsibilities.

11. Explain how to evaluate changes in CCB meeting?

12. “Poor requirements are the most common cause of software quality problems.” Justify your answer with example.

13. List out and explain software requirement problems with example.
